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lonic reactions in two dimensions with disorder
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We analyze the dynamics of the ion-dipole pairing reaction in the two-dimensional Coulomb gas in the
presence of disorder. Sufficiently singular disorder forces the critical temperature of the Kosterlitz-Thouless-
Berezinskii fixed point to be nonuniversal. This disorder leads to anomalous ion pairing kinetics with a
continuously variable decay exponent. Sufficiently strong disorder eliminates the transition altogether. For ions
that are chemically reactive, anomalous kinetics with a continuously variable decay exponent also occurs in the
high-temperature regime. The Coulomb interaction inhibits reactant segregation, and so the ionic
A" +B~ = reaction behaves like the noniomct A— & reaction.[S1063-651%98)07208-Q

PACS numbd(s): 82.20.Db, 05.40tj, 82.20.Mj

[. INTRODUCTION mic corrections cannot be excluded due to the use of mean-
field type equations.

The two-dimensional Coulomb gas has been the subject Studies of single-ion diffusion in correlated disorder have
of careful attention since the elucidation of its low- Shown that for sufficiently long-ranged, disordered potential
temperature phase by Kosterlitz and Thoulgdsand Berez-  fields, anomalous diffusion occur¢see, for example,
inskii [2]. Above a critical value of the dimensionless tem-[11,27—34). lonic disorder in two dimensions creates just
perature, the system approximately obeys Debyekitu such a potential fieldy(x), that leads to anomalous diffusion.

statistics(as it does for all temperatures in three dimensions AS IN prewoqtshwork[19,38|, we dassumle tf[he ?Otept'al to be
Below the transition temperature, ions of opposite charg aussian, with zero mean and correiation unctigp(r).
pair to form dipoles. The temperature at which this metal- he appropriate form for the Fourier transform at long wave-

insulator transition occurs is universal in the absence of diseNgths isx,, (k) =Jdx exp(k-x) x,,(x) = y/k*. This type
order. In the related superfluid system, this universality cor®f disorder leads to anomazlous dlIfyglon with a
responds to the universal jump discontinuity in superfluigcontinuously \éanable exponenfr(t))~bt""°, where §
density(see[3] for a review. =1[1+87/(By)]. _ _ _

The dynamics of the Coulomb gas under an external ﬁelqio In this paper, we use the rigorous field-theoretic formula-

has been analyzed by phenomenological extensions of the . of reaction kinetic{35-37 to analyze hoth the ion-
y yPp 9 airing reaction near the metal-insulator transition and the

stat_ic Kosterlitz-Thouless argumelk-13). Different scaling A*+B~ —J annihilation reaction at high temperatures. The

varying external field$14]. While the equilibrium properties s presented in Sec. IIl. Two dimensions is the upper critical
of the two-dimensional Coulomb gas have been establishegimension for this system—the dimension below which
rigorously via field-theoretic analysis of the sine-Gordonmean-field theory fails. We derive the renormalization-group
Hamiltonian [15-18, there has been to date no rigorous, flows for this system in Sec. IV. We give an asymptotically
field-theoretic model for the ionidynamics near the low-  exact renormalization-group analysis of the long-time dy-
temperature critical point or otherwise. namics in Sec. V. For the low-temperature phase, we find a
The dynamics of the two-dimensional reactiéi + B~ decay exponent that depends continuously on the strength of
—J, whereA™ and B~ are ions of opposite charge, has disorder. Moreover, we find that the critical temperature,
been studied in the high-temperature limit by scaling arguwhich is universal in the absence of disorder, depends con-
ments and computer simulation. In the absence of Coulomtinuously on the strength of disorder. In Sec. VI we analyze

interaction, theA andB reactants segregate. This segregatiorthe high-temperature dynamics of tA€ +B~— chemi-
leads to the diffusion-limited decay law(ca(t)) cal reaction. We find a classical decay in the absence of

~[ng/(872Dt)]1¥2[19]. Local charge neutrality enforced by disorder and anomalous kinetics in the presence of disorder.

the Coulomb interaction inhibits this segregation of the reac] & Coulomb interaction prevents segregation of the reac-
tants, allowing for a faster decay law. The charge density stilfants under all conditions, and so the dynamics of the ionic
decays as a power ladg(t))~at . The decay exponest A TB —@ reaction is similar to that of the neutral
has been observed in computer simulations to range frorﬁ‘,+Aﬁ@ reactlon. We cqnclu.de'ln Sec. VIl with a discus-
0.79+0.04[20] to 0.85*+0.05[21] to unity with logarithmic sion of the experimental implications of our results.
corrections[22]. Scaling theories have been proposed that Il. MASTER EQUATION FOR LOW-TEMPERATURE

lead to values for the decay exponent from 0[8%,23 to ' ION PAIRING

unity [24,25. An approximate, self-consistent treatment of

the classical reaction diffusion equations leads to the predic- To analyze the ion pairing that takes place below the tran-
tion that the decay exponent is un[36], although logarith-  sition temperature, we consider the following reaction:
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A++B*éC, (1) sulting from a high-temperature quench. The ion-dipole in-
T teraction will prove to be irrelevant, and so we can ignore the
dipole orientation. The presence of the dipoles will, however,
whereA"™ andB~ are the ions of opposite charge, aids  be relevant, and so it is necessary to include the rea¢tion
the dipole. We choose initially to have equal densities of ions By considering the reaction on a lattice, we can write a
(ca(0))=(cg(0))=ny and no dipoles. The ions are initially master equation that governs changes in the densitiés pf
distributed at random, with Poissonian statistics. The longB~, andC. The master equation relates how the probability
time decay is not sensitive to short-ranged correlations tha® of a given configuration of particles on the lattice changes
might be present in the initial conditions, such as those rewith time:

JP({mi}, {ni},{li},t)  Da

> [THm+1)P(m—1m;+ 1) - TimP]

at (AT
(Ar)22 [TS(nj+1)P(n;— (FDP(—1)+10)—1;P]
(A )22 [(m+1)(ni+1)P(m+1n+1);—1t)—mn;P]
+r [(+D)P(m—1n-1);+1)—1,P]. 2

Herem; is the number oA\ ions on sitd, n; is the number oB ions on sitd, andl; is the number o particles at sité. The
summation over is over all sites on the lattice, and the summation gvsrover the nearest neighbors of sitél'he lattice
spacing is g|ven bwr. The diffusive transition matrix for hopping from siteto a nearest-neighbor sitels given byT
—[1+,8(u —Uj N12] andT [1+,8(u — U BY/2]. Hereu is the sum of an external, quenched, random potential and the
Coulomb potentlal created by all of th:&her ions. Specmcallyu =0+ Z [ M k= Sko— Ni+k]Ck andu =—v;+ 2 [ Nitk

— Sko— Mi.JCk. Herev; is the external, random potential at siteandc, is the Coulomb mteractlon(r)— =J In(r)/(2m).

For simplicity we will assume that the ions have the same diffusiiity=Dg=D. The inverse temperature is given By
=1/(kgT).

IIl. THE FIELD THEORY
Using the coherent state representation, we map the master equation onto a field36e8. We incorporate a random

potential into the field theory via the replica trigk9,27]. We also incorporate the ionic interaction into the field theory, taking
care with the excluded self-interaction terms.

The field theory that we generate is quadratic in the fields associated with the dipole density. Integrating out these fields, we
are left with the actiorB=Sy+S;+S,+ S;+S4+ Ss,

tf JR— tf J—
SD=J dde dta,(x,t)[d,—DV?+ 5(t)]aa(x,t)+f ddxf dth,(x,t)[d;— DV?+ 8(1)]b(x,t),
0 0
Si= 1o | %2, (%0 +b,(x0)]
tf —_ —_ — —
Sz=}\j ddxf0 dtfa,(x,t)b,(X,t) +a,(X,t)+ b (X t)]a, (X t)b,(X,t),

S3= —Mf ddxddx'f;fdtdt'[ga(x,t)ﬁa(x,t)+Za(x,t)+Ea(x,t)]<a(x,x'|t,t’)aa(x',t')ba(x',t'),
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t _ ~ -
si=B3 [ dt @m0, (g, By (ky 0B, (ke 1)
0 Jkgkokaky

kKi-(kytkp)

X[a,(Ks,t)a,(Ky,t) —lbLa(kg b, 1)] PETRE

B2D2 [t . . - .
s= Pty | @malkt ko a ka) ) aut) ~Boyka t)B (K )

2 1koksky
X [@,,(Ka.t2)84,(Ka,t2) = b, (K3 t2)By (Ka 1) Ty (KyFKo)Kg: (Ky k)Xo ([K1+ ko). (3
|
Summation is implied over replica indices. The notatjgn AT+B 20, (6)
stands forfd%/(2)9. The upper time limit in the action is ner

arbitrary as long as it exceeds times for which we wish to_ ] ]
make calculations. The random, Poissonian initial condition! NiS reaction can be recognized as the one addressed by the

is accounted for by the terrS,. The forward reaction is usual sine-Gordon model of the Coulomb gas, with the equi-

- . - . . . s 2_
captured by the terns,. The effective potential due to the liPrium ionic densityy given at low densities by“=nc7/\.

dipoles is captured by the ter®,. The propagator of the The flow equations for these two fornt; andS;, are, of
dipoles is given by course, equivalent. The Coulomb interaction between the

ions is captured by the ter®,. Note that the Coulomb cou-
exd — (Dck2+ m)t],  t>0, pling sh_oulq be an e_:ffective one, including a finite
0. t=0 (4) renormalization due to dipole screening. The effective poten-
’ ' tial due to the randomness is captured in the t&m
The concentrations, averaged over initial conditions, are
given by

G(k,t)=

whereD¢ is the diffusion coefficient of the dipoles. At long
times, the ion density will be much smaller than the dipole
density, and we can replace the instantaneous dipole density

with the average density. This simplifies the effective dipole {ealx.t))= lim (a(x,1)),

term to N0 (7)
t . . (cg(x,t))y=lim (b(x,t)),
ng—ncrf ddxf dtf @, (x,t)b,(x,t)+a,(xt) N—0
0
where the average on the right-hand side is taken with re-
+h(x,1)], (5)  Spectto exptS).
with n.=ny—(ca(t))~ng. This modified action is identical IV. RENORMALIZATION-GROUP FLOWS

to that for the reaction o
We use renormalization-group theory to deduce the long-

time scaling of the ionic concentration. The diagrams that we

a b . . need to consider are illustrated in Fig. 1.
a b The one-loop flow equations that result are
/\\ \/ dInn. s
a b dl )
a b
0" v oo y* dinx +,8J B2y
di 47D 27 45’
d In(ng7/\ J B
din(ner/™) _, f_ By
s v o v dl T 27

FIG. 1. The vertices considered in the field theory. We have set 2
a*=a+1 and b*=Db+1. All combinations of p=a,b and ¢ din(gd) A" n°T1
=a,b are considered. dl 2wD% AA4

®
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dIn(B%)  \%B3 ner 0.010
dl 7D2 NAY
0.008
whereA is the cutoff in Fourier space. The dynamical expo-
nent is given by 0.006 |
2 2 2 >
A N.T
7=2+ Fy By M N (9) 0.004 |
47w 4w D?ZAA?
These flow equations are valid to first order #nAt this 0.002
order, they are valid to all orders j8J. Also at this order,
the flow equation foB?vy is likely valid to all orders in8%y 0.000 ‘ ‘
[19,3§. The flow equation foik may contain contributions 0.00 0.50 1.00 1.50 2.00
from higher orders in8?y. 8m/(BI)

FIG. 2. The flow of the equilibrium ion density near the low-
temperature critical point. Below the critical temperature the ion
density is driven to zero as dipoles are formed. Above the critical

To compute the long-time value of the ionic concentra- ) : ) )
tion, we integrate the flow equations up to a matching time temperature the dipoles unpair, and the ion density becomes large.
or each curvep?y=1 and\/D=167+1 at the point closest to

to- We match the results of the flow equations to a mean-fiel(lg;e oritical point
theory that is valid for short times. At these short times, we pont.

need not worry about renormalization of the reaction rates oggsterlitz-Thouless result when disorder is absent, with

Coulomb coupling. Furthermore, the reaction dynamics 0C=— (¢,)2=n,7/\. Figure 2 shows the flows for the case of
curs in a local region, where the random potential is roughly,eak disorder.

constant, and so we may assume normal diffusive behavior. |nerestingly, we can deduce the one-loop critical tem-

In other words, we can use the standard, classical reactigferature in the presence of disorder with an extension of the
diffusion equations. A self-consistent treatment of theseelementary Kosterlitz-Thouless free-energy argumigt
equations has recently been preseri@]. This theory sug-  this argument predicts that the ion pairs will unbind when
gests that the Coulomb interaction prevents segregation e free energy to create two unbound oS, = (E,

the reactants. Moreover, the reaction is not limited by local_ E_)—T(S.+S.), is positive. The Coulomb energy of the
trarjsport as Iong_ as< 2,3\] D. We see that this condition is 5 pair is, of coursel o(r)=J In(r)/(2m). The effective in-
satisfied by the fixed point forward rate, and so the concengeraction between an ion pair due to the random potential is

V. MATCHING AND RESULTS

tration is given by given by Uy (1)=— B Inexg~Ap(0)—v(n)]})=
(Calt(1),))y=11Ling(1) +A*t(1)]. (100  —ByIn(r)/(2m). Quenched and annealed statistics are identi-
cal here for an ion pair separated by a finite distance) a
We find the physical concentration from the relation sufficiently large disordered medium, since the correlations
in the potential for the ion pair are short rand@9,40. The
(ca(t))=e"(calt(1),1)). (1)  entropy of the ion pair is, of coursekgin(r). The ions,

therefore, proliferate whepJ— 82y<8sr. This condition is
exactly the one contained in the flows of E&) near the
1 ( ) >5 low-temperature fixed point. This energy-entropy argument

The result is

- is not strictly rigorous, since the metal-insulator transition
(ca(t)) (12 , . . .
At occurs forr~L, whereL is the system size. In this regime,
the correlations in the potential for the ion pair are not short-
with the fixed point reaction rate given from E¢(B) as ranged, and quenched and annealed statistics are not strictly
A*ID=2BJ* — B?y* =16mw+ B%vy*. Interestingly, we see equal. What we have shown is that to one loop order these
that\* is finite at the Kosterlitz-Thouless fixed point, where distinct statistics lead to the same behavior. Unless some-
(nc.7)* vanishes. Dipole dissociation, then, is key to thething unexpected occurs in the regimeL, our location of
physics of the low-temperature fixed point. the critical point may be exact to all orders.

We see that the ions pair according to the classical law in The transition temperature, which is universal in the ab-
the absence of disorder. In the presence of disorder, we fingence of disorder, becomes continuously variable in the pres-
anomalous kinetics. The kinetics is anomalous because ance of disorder. This is a unique feature of the ionic disor-
long times and low concentrations the reaction becomes difder that we are considering. The system undergoes a
fusion limited, and at long times the diffusion is anomaloustransition from insulator to metal either by decreasgjor
in the type of disorder that we are considering. Note that thisy increasing the density of defects=/y/J. Figure 3
kinetics of the ion pairing in disorder below the transition shows the phase diagram of the system at infinitesimally
temperature is identical to that for thee+A—(J reaction  small total(free plus boungion density.
with disorder[38], except for a different value of*. Note that sufficiently strong disorder eliminates the insu-

If we interpret these flow equations as relations betweetating phase completely. A similar type of equilibrium phase
related equilibrium models, we recognize the standarddiagram has been predicted for two-dimensional crystals

to
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0.20 physically plausible, cannot be rigorously established with
our flow equations. A similar reentrant phase diagram has
been predicted for the equilibriutdY model with random
Dzyaloshinskii-Moriya interactions, which leads again, in
our language, to a two-dimensional Coulomb gas with ran-

0.15
Conductor dom, quenched dipold€3].
The ratio p=/y/J remains constant under renormaliza-
Q 010 f-----mmmmeommee- tion. This means that we can defiye= y,/€? andJ=J,/¢,
and one flow equation fos will result. This factore is none
other than the dielectric constant. The disorder term contains
two powers of the dielectric constant because it is a correla-
tion function of the disorder potential. The flow equation for
€ is not universa[15-18 and should probably include ad-
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0.05
Insulator
ditional (finite) terms.
0.00
0.0 05 1.0 1.5 VI. HIGH-TEMPERATURE DYNAMICS
8mw/pJ
We now turn to consider two-dimensional ionic reactions
FIG. 3. The Kosterlitz-Thouless-Berezinskii fixed litalid) in at high temperatures. That is, we consider the reaction
the presence of disorder for infinitesimally small total ion density. )
AT+B =P, (13

Here p=\/y/J is roughly the density of defects. The system is an

insulator below the curve.

: - . . . whereP is the neutral product of the reaction. In the high-
V.V'th lradn_dorg su'bst|tut|.on;al dl§0fdé41[42|. This S”bSt'tlg temperature regime, the ions pair to an insignificant extent.
tional disorder Is equivalent, in our language, to randoMpis foliows from physical considerations. This conclusion

quenched dipoles. So we see that quenched ions obeyingg, to)1ows from the flow equations that drive the ion den-
sity to large values. Since the dipole density is insignificant,

bulk charge neutrality behave in the long-wavelength limit in

the same way as random, quenched dipoles. we may ignore the ion-dipole pairing reaction. By comparing
A reentrant metallic phase may occur at low temperaturesEq. (13) with Eq. (6), we see that the appropriate action for
&his reaction is Eq(3) with the replacement—k, 7—0,

This insulating to conducting transition may occur becaus
the forces arising from the disorder, which tend to separate 4, —ny. The flow equations for this case are
c .

the ion pairs, are a factor TLigreater than the bare Coulomb
forces. Figure 4 shows the reentrant phase diagram predicted
by the flow equations fop=+/y/J=0.05 for a range of ini-

tial values ofy=(c,)=[n.7/\]1"? and BJ.
The temperature at which the reentrant phase occurs is
dink kBl B

dinng
dl

roughly proportional toy/y. Since our flow equations are an
expansion in8%y, they are not strictly valid in the reentrant dl 477_D+ 27 E
regime. Thus, the existence of the reentrant phase, while
0.030 amn(pd) : (14)
v’ dl
! 2
: dIn(g*y _
0.020 | | di
! Conductor _ ,
~ : In this caseBJ is a constant to all orders. As befdrkd,3§,
§ ! it seems likely thajB?y is a constant to all orders. The flow
! equation fork is accurate to first order only i8%y. For our
o010 | | Insulator purpose, we will assume that the fixed-point reaction rate,
! k*/D=2BJ— B?v, is always positive. Note that irrelevant
! details can renormalizé finite amount all of the param-
." eters of the model. Dipole screening leading to a dielectric
0.000 : constant greater than unity is an example of this phenom-
0.0 0.2 0.4 0.6 0.8 1.0 enon.
8n/BJ We can again perform the matching. Since at the fixed
point the reaction step is still rate limiti@6], we find the
FIG. 4. The Kosterlitz-Thouless-Berezinskii fixed line in the same classical decay as for the ion-pairing reaction:
presence of a fixed amount of disordgrs \/y/J=0.05. Note the
reentrant phase at low temperatures for a finite density of free ions, 1 ( t ) o
e~ ) (15

y. The curve is strictly valid only in the high-temperature regime

(solid).



1492 JEONG-MAN PARK AND MICHAEL W. DEEM PRE 58

Since reactant segregation is suppressed, this result for th@purity phases in these systems. This equilibrium behavior
high-temperature ionic reactioh” + B~ —J is identical to  has, in fact, been seen in the melting of hexatic monolayers
that for the neutral reactioA+ A— & except for a different [44] and hexatic charge-density wa&s$,46, where discli-
value ofk* [38]. nations pinned by surface defects lead to a continuous low-
ering of the hexatic-liquid transition temperature. In other
VIl. CONCLUSIONS words, these experiments have shown that the order-disorder
transition can be driven either by increasing temperature or
There are many systems well modeled by the 2D Couty increasing disorder. In terms of Fig. 3, these experiments
lomb gas. A simple physical system might be, for examplecrossed the transition line by increasing the disorder, i.e., by
ions confined to a thin film between two insulators. Othermoving Vertica”y upwards_ |Onic reactions’ SUCh as those
examples include dislocations or disclinations in systemgonsidered in [20-26, should decay as (ca(t))
such as charge-density waves, Abrikosov flux lattices, or.1/(283Dt) at long times in the absence of disorder. In the
Langmuir-BlOdgett films. In all cases, the defects unbind arpresence of |0ng_ranged' |Ogarithmic_type disorm’27_
higher temperatures, in a form of Kosterlitz-Thouless-34], ions at finite density should pair in the low-temperature
Berezinskii transition. In the case of disclinations, or scalaihhase according to Eq12). Finally, the concentration of

sider, and the system is a perfect instance of the 2D Coulomfamperature in this same type of disorder should decay as Eq.
gas model. The type of disorder that we consider oftenis).

comes about in these systems via pinning of some of the

defects. The density of impurities, which are disrupting the

low-temperature phage, can be controlled via the number of ACKNOWLEDGMENTS
surface defects and is given roughly py: \/y/J.
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