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Ionic reactions in two dimensions with disorder
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We analyze the dynamics of the ion-dipole pairing reaction in the two-dimensional Coulomb gas in the
presence of disorder. Sufficiently singular disorder forces the critical temperature of the Kosterlitz-Thouless-
Berezinskii fixed point to be nonuniversal. This disorder leads to anomalous ion pairing kinetics with a
continuously variable decay exponent. Sufficiently strong disorder eliminates the transition altogether. For ions
that are chemically reactive, anomalous kinetics with a continuously variable decay exponent also occurs in the
high-temperature regime. The Coulomb interaction inhibits reactant segregation, and so the ionic
A11B2→B reaction behaves like the nonionicA1A→B reaction.@S1063-651X~98!07208-0#

PACS number~s!: 82.20.Db, 05.40.1j, 82.20.Mj
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I. INTRODUCTION

The two-dimensional Coulomb gas has been the sub
of careful attention since the elucidation of its low
temperature phase by Kosterlitz and Thouless@1# and Berez-
inskii @2#. Above a critical value of the dimensionless tem
perature, the system approximately obeys Debye-Hu¨ckle
statistics~as it does for all temperatures in three dimension!.
Below the transition temperature, ions of opposite cha
pair to form dipoles. The temperature at which this met
insulator transition occurs is universal in the absence of
order. In the related superfluid system, this universality c
responds to the universal jump discontinuity in superfl
density~see@3# for a review!.

The dynamics of the Coulomb gas under an external fi
has been analyzed by phenomenological extensions of
static Kosterlitz-Thouless argument@4–13#. Different scaling
regimes were found, and these are now understood to co
spond to the cases of weak, slowly varying or strong, rap
varying external fields@14#. While the equilibrium properties
of the two-dimensional Coulomb gas have been establis
rigorously via field-theoretic analysis of the sine-Gord
Hamiltonian @15–18#, there has been to date no rigorou
field-theoretic model for the ionicdynamics, near the low-
temperature critical point or otherwise.

The dynamics of the two-dimensional reactionA11B2

→B, whereA1 and B2 are ions of opposite charge, ha
been studied in the high-temperature limit by scaling ar
ments and computer simulation. In the absence of Coulo
interaction, theA andB reactants segregate. This segregat
leads to the diffusion-limited decay law^cA(t)&
;@n0 /(8p2Dt)#1/2 @19#. Local charge neutrality enforced b
the Coulomb interaction inhibits this segregation of the re
tants, allowing for a faster decay law. The charge density
decays as a power law,^cA(t)&;at2x. The decay exponentx
has been observed in computer simulations to range f
0.7960.04 @20# to 0.8560.05 @21# to unity with logarithmic
corrections@22#. Scaling theories have been proposed t
lead to values for the decay exponent from 0.85@21,23# to
unity @24,25#. An approximate, self-consistent treatment
the classical reaction diffusion equations leads to the pre
tion that the decay exponent is unity@26#, although logarith-
PRE 581063-651X/98/58~2!/1487~7!/$15.00
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mic corrections cannot be excluded due to the use of me
field type equations.

Studies of single-ion diffusion in correlated disorder ha
shown that for sufficiently long-ranged, disordered poten
fields, anomalous diffusion occurs~see, for example,
@11,27–34#!. Ionic disorder in two dimensions creates ju
such a potential field,v(x!, that leads to anomalous diffusion
As in previous work@19,38#, we assume the potential to b
Gaussian, with zero mean and correlation functionxvv(r ).
The appropriate form for the Fourier transform at long wav
lengths is x̂vv(k)5*dx exp(ik•x)xvv(x)5g/k2. This type
of disorder leads to anomalous diffusion with
continuously variable exponent̂r 2(t)&;bt12d, where d
51/@118p/(b2g)#.

In this paper, we use the rigorous field-theoretic formu
tion of reaction kinetics@35–37# to analyze both the ion-
pairing reaction near the metal-insulator transition and
A11B2→B annihilation reaction at high temperatures. T
master equation formulation of this reaction is described
Sec. II. The field theory that we derive from this descripti
is presented in Sec. III. Two dimensions is the upper criti
dimension for this system—the dimension below whi
mean-field theory fails. We derive the renormalization-gro
flows for this system in Sec. IV. We give an asymptotica
exact renormalization-group analysis of the long-time d
namics in Sec. V. For the low-temperature phase, we fin
decay exponent that depends continuously on the streng
disorder. Moreover, we find that the critical temperatu
which is universal in the absence of disorder, depends c
tinuously on the strength of disorder. In Sec. VI we analy
the high-temperature dynamics of theA11B2→B chemi-
cal reaction. We find a classical decay in the absence
disorder and anomalous kinetics in the presence of disor
The Coulomb interaction prevents segregation of the re
tants under all conditions, and so the dynamics of the io
A11B2→B reaction is similar to that of the neutra
A1A→B reaction. We conclude in Sec. VII with a discu
sion of the experimental implications of our results.

II. MASTER EQUATION FOR LOW-TEMPERATURE
ION PAIRING

To analyze the ion pairing that takes place below the tr
sition temperature, we consider the following reaction:
1487 © 1998 The American Physical Society
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A11B2

t

l
C, ~1!

whereA1 andB2 are the ions of opposite charge, andC is
the dipole. We choose initially to have equal densities of io
^cA(0)&5^cB(0)&5n0 and no dipoles. The ions are initiall
distributed at random, with Poissonian statistics. The lo
time decay is not sensitive to short-ranged correlations
might be present in the initial conditions, such as those
s

-
at
-

sulting from a high-temperature quench. The ion-dipole
teraction will prove to be irrelevant, and so we can ignore
dipole orientation. The presence of the dipoles will, howev
be relevant, and so it is necessary to include the reaction~1!.

By considering the reaction on a lattice, we can write
master equation that governs changes in the densities ofA1,
B2, andC. The master equation relates how the probabi
P of a given configuration of particles on the lattice chang
with time:
the

ing

elds, we
]P~$mi%,$ni%,$ l i%,t !

]t
5

DA

~Dr !2(i , j @Tji
A~mj11!P~mi21,mj11,t !2Ti j

Ami P#

1
DB

~Dr !2(i , j @Tji
B~nj11!P~ni21,nj11,t !2Ti j

Bni P#1
DC

~Dr !2(i , j @~ l j11!P~ l i21,l j11,t !2 l i P#

1
l

~Dr !2(i
@~mi11!~ni11!P~mi11,ni11,l i21,t !2mini P#

1t(
i

@~ l i11!P~mi21,ni21,l i11,t !2 l i P#. ~2!

Heremi is the number ofA ions on sitei , ni is the number ofB ions on sitei , andl i is the number ofC particles at sitei. The
summation overi is over all sites on the lattice, and the summation overj is over the nearest neighbors of sitei. The lattice
spacing is given byDr . The diffusive transition matrix for hopping from sitei to a nearest-neighbor sitej is given byTi j

A

5@11b(ui
A2uj

A)/2# and Ti j
B5@11b(ui

B2uj
B)/2#. Here u is the sum of an external, quenched, random potential and

Coulomb potential created by all of theother ions. Specifically,ui
A5v i1(k@mi 1k2dk02ni 1k#ck and ui

B52v i1(k@ni 1k

2dk02mi 1k#ck . Herev i is the external, random potential at sitei, andck is the Coulomb interactionc(r )52J ln(r)/(2p).
For simplicity we will assume that the ions have the same diffusivity,DA5DB5D. The inverse temperature is given byb
51/(kBT).

III. THE FIELD THEORY

Using the coherent state representation, we map the master equation onto a field theory@35–37#. We incorporate a random
potential into the field theory via the replica trick@19,27#. We also incorporate the ionic interaction into the field theory, tak
care with the excluded self-interaction terms.

The field theory that we generate is quadratic in the fields associated with the dipole density. Integrating out these fi
are left with the actionS5S01S11S21S31S41S5 ,

S05E ddxE
0

t f
dtāa~x,t !@] t2D¹21d~ t !#aa~x,t !1E ddxE

0

t f
dtb̄a~x,t !@] t2D¹21d~ t !#ba~x,t !,

S152n0E ddx@ āa~x,0!1b̄a~x,0!#,

S25lE ddxE
0

t f
dt@ āa~x,t !b̄a~x,t !1āa~x,t !1b̄a~x,t !#aa~x,t !ba~x,t !,

S352ltE ddxddx8E
0

t f
dtdt8@ āa~x,t !b̄a~x,t !1āa~x,t !1b̄a~x,t !#G” ~x,x8ut,t8!aa~x8,t8!ba~x8,t8!,



PRE 58 1489IONIC REACTIONS IN TWO DIMENSIONS WITH DISORDER
S45bJE
0

t f
dtE

k1k2k3k4

~2p!dd~k11k21k31k4!@ â̄a~k1 ,t !âa~k2 ,t !2 b̂̄a~k1 ,t ! b̂̄a~k2 ,t !#

3@ â̄a~k3 ,t !âa~k4 ,t !2 b̂̄a~k3 ,t !b̂a~k4 ,t !#
k1•~k11k2!

uk11k2u2
,

S55
b2D2

2
E

0

t f
dt1dt2E

k1k2k3k4

~2p!dd~k11k21k31k4!@ â̄a1
~k1 ,t1!âa1

~k2 ,t1!2 b̂̄a2
~k1 ,t1!b̂a2

~k2 ,t1!#

3@ â̄a3
~k3 ,t2!âa3

~k4 ,t2!2 b̂̄a4
~k3 ,t2!b̂a4

~k4 ,t2!#k1•~k11k2!k3•~k11k2!x̂vv~ uk11k2u!. ~3!
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Summation is implied over replica indices. The notation*k
stands for*ddk/(2p)d. The upper time limit in the action is
arbitrary as long as it exceeds times for which we wish
make calculations. The random, Poissonian initial condit
is accounted for by the termS1. The forward reaction is
captured by the termS2. The effective potential due to th
dipoles is captured by the termS3. The propagator of the
dipoles is given by

G”̂ ~k,t !5 Hexp@2~DCk21t!t#, t.0,
0, t<0, ~4!

whereDC is the diffusion coefficient of the dipoles. At lon
times, the ion density will be much smaller than the dipo
density, and we can replace the instantaneous dipole de
with the average density. This simplifies the effective dip
term to

S3852nctE ddxE
0

t f
dt@ āa~x,t !b̄a~x,t !1āa~x,t !

1b̄a~x,t !], ~5!

with nc5n02^cA(t)&;n0. This modified action is identica
to that for the reaction

FIG. 1. The vertices considered in the field theory. We have

a* 5ā11 and b* 5b̄11. All combinations of w5a,b and c
5a,b are considered.
o
n

ity
e

A11B2

nct

l
B. ~6!

This reaction can be recognized as the one addressed b
usual sine-Gordon model of the Coulomb gas, with the eq
librium ionic densityy given at low densities byy25nct/l.
The flow equations for these two forms,S3 andS38 , are, of
course, equivalent. The Coulomb interaction between
ions is captured by the termS4. Note that the Coulomb cou
pling should be an effective one, including a fini
renormalization due to dipole screening. The effective pot
tial due to the randomness is captured in the termS5.

The concentrations, averaged over initial conditions,
given by

^cA~x,t !&5 lim
N→0

^a~x,t !&,

~7!

^cB~x,t !&5 lim
N→0

^b~x,t !&,

where the average on the right-hand side is taken with
spect to exp(2S).

IV. RENORMALIZATION-GROUP FLOWS

We use renormalization-group theory to deduce the lo
time scaling of the ionic concentration. The diagrams that
need to consider are illustrated in Fig. 1.

The one-loop flow equations that result are

d ln nc

dl
52,

d ln l

dl
52

l

4pD
1

bJ

2p
2

b2g

4p
,

d ln~nct/l!

dl
542

bJ

2p
1

b2g

2p
,

d ln~bJ!

dl
52

l2bJ

2pD2

nct

lL4
, ~8!
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d ln~b2g!

dl
52

l2bJ

pD2

nct

lL4
,

whereL is the cutoff in Fourier space. The dynamical exp
nent is given by

z521
b2g

4p
1

b2g

4p

l2

D2

nct

lL4
. ~9!

These flow equations are valid to first order int. At this
order, they are valid to all orders inbJ. Also at this order,
the flow equation forb2g is likely valid to all orders inb2g
@19,38#. The flow equation forl may contain contributions
from higher orders inb2g.

V. MATCHING AND RESULTS

To compute the long-time value of the ionic concent
tion, we integrate the flow equations up to a matching tim
t0. We match the results of the flow equations to a mean-fi
theory that is valid for short times. At these short times,
need not worry about renormalization of the reaction rate
Coulomb coupling. Furthermore, the reaction dynamics
curs in a local region, where the random potential is roug
constant, and so we may assume normal diffusive beha
In other words, we can use the standard, classical reac
diffusion equations. A self-consistent treatment of the
equations has recently been presented@26#. This theory sug-
gests that the Coulomb interaction prevents segregatio
the reactants. Moreover, the reaction is not limited by lo
transport as long asl<2bJD. We see that this condition i
satisfied by the fixed point forward rate, and so the conc
tration is given by

^cA„t~ l !,l …&51/@1/n0~ l !1l* t~ l !#. ~10!

We find the physical concentration from the relation

^cA~ t !&5e22l^cA„t~ l !,l …&. ~11!

The result is

^cA~ t !&;
1

l* t
S t

t0
D d

, ~12!

with the fixed point reaction rate given from Eq.~8! as
l* /D52bJ* 2b2g* 516p1b2g* . Interestingly, we see
thatl* is finite at the Kosterlitz-Thouless fixed point, whe
(nct)* vanishes. Dipole dissociation, then, is key to t
physics of the low-temperature fixed point.

We see that the ions pair according to the classical law
the absence of disorder. In the presence of disorder, we
anomalous kinetics. The kinetics is anomalous becaus
long times and low concentrations the reaction becomes
fusion limited, and at long times the diffusion is anomalo
in the type of disorder that we are considering. Note that
kinetics of the ion pairing in disorder below the transitio
temperature is identical to that for theA1A→B reaction
with disorder@38#, except for a different value ofl* .

If we interpret these flow equations as relations betw
related equilibrium models, we recognize the standa
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Kosterlitz-Thouless result when disorder is absent, withy2

5^cA&25nct/l. Figure 2 shows the flows for the case
weak disorder.

Interestingly, we can deduce the one-loop critical te
perature in the presence of disorder with an extension of
elementary Kosterlitz-Thouless free-energy argument@1#.
This argument predicts that the ion pairs will unbind wh
the free energy to create two unbound ions,F65(E1

1E2)2T(S11S2), is positive. The Coulomb energy of th
ion pair is, of course,UC(r )5J ln(r)/(2p). The effective in-
teraction between an ion pair due to the random potentia
given by UVeff

(r )52b21ln^exp$2b@v(0)2v(r)#%&5
2bg ln(r)/(2p). Quenched and annealed statistics are ide
cal here for an ion pair separated by a finite distance,r, in a
sufficiently large disordered medium, since the correlatio
in the potential for the ion pair are short ranged@39,40#. The
entropy of the ion pair is, of course, 4kBln(r). The ions,
therefore, proliferate whenbJ2b2g,8p. This condition is
exactly the one contained in the flows of Eq.~8! near the
low-temperature fixed point. This energy-entropy argum
is not strictly rigorous, since the metal-insulator transiti
occurs forr'L, whereL is the system size. In this regime
the correlations in the potential for the ion pair are not sho
ranged, and quenched and annealed statistics are not st
equal. What we have shown is that to one loop order th
distinct statistics lead to the same behavior. Unless so
thing unexpected occurs in the regimer'L, our location of
the critical point may be exact to all orders.

The transition temperature, which is universal in the a
sence of disorder, becomes continuously variable in the p
ence of disorder. This is a unique feature of the ionic dis
der that we are considering. The system undergoe
transition from insulator to metal either by decreasingbJ or
by increasing the density of defects,r5Ag/J. Figure 3
shows the phase diagram of the system at infinitesim
small total~free plus bound! ion density.

Note that sufficiently strong disorder eliminates the ins
lating phase completely. A similar type of equilibrium pha
diagram has been predicted for two-dimensional crys

FIG. 2. The flow of the equilibrium ion density near the low
temperature critical point. Below the critical temperature the
density is driven to zero as dipoles are formed. Above the crit
temperature the dipoles unpair, and the ion density becomes la
For each curve,b2g51 andl/D516p11 at the point closest to
the critical point.
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with random substitutional disorder@41,42#. This substitu-
tional disorder is equivalent, in our language, to rando
quenched dipoles. So we see that quenched ions obe
bulk charge neutrality behave in the long-wavelength limit
the same way as random, quenched dipoles.

A reentrant metallic phase may occur at low temperatu
This insulating to conducting transition may occur beca
the forces arising from the disorder, which tend to sepa
the ion pairs, are a factor 1/T greater than the bare Coulom
forces. Figure 4 shows the reentrant phase diagram pred
by the flow equations forr5Ag/J50.05 for a range of ini-
tial values ofy5^cA&5@nct/l#1/2 andbJ.

The temperature at which the reentrant phase occur
roughly proportional toAg. Since our flow equations are a
expansion inb2g, they are not strictly valid in the reentran
regime. Thus, the existence of the reentrant phase, w

FIG. 3. The Kosterlitz-Thouless-Berezinskii fixed line~solid! in
the presence of disorder for infinitesimally small total ion dens
Herer5Ag/J is roughly the density of defects. The system is
insulator below the curve.

FIG. 4. The Kosterlitz-Thouless-Berezinskii fixed line in th
presence of a fixed amount of disorder,r5Ag/J50.05. Note the
reentrant phase at low temperatures for a finite density of free i
y. The curve is strictly valid only in the high-temperature regim
~solid!.
,
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e
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physically plausible, cannot be rigorously established w
our flow equations. A similar reentrant phase diagram
been predicted for the equilibriumXY model with random
Dzyaloshinskii-Moriya interactions, which leads again,
our language, to a two-dimensional Coulomb gas with r
dom, quenched dipoles@43#.

The ratior5Ag/J remains constant under renormaliz
tion. This means that we can defineg5g0 /e2 andJ5J0 /e,
and one flow equation fore will result. This factore is none
other than the dielectric constant. The disorder term conta
two powers of the dielectric constant because it is a corr
tion function of the disorder potential. The flow equation f
e is not universal@15–18# and should probably include ad
ditional ~finite! terms.

VI. HIGH-TEMPERATURE DYNAMICS

We now turn to consider two-dimensional ionic reactio
at high temperatures. That is, we consider the reaction

A11B2→
k

P, ~13!

whereP is the neutral product of the reaction. In the hig
temperature regime, the ions pair to an insignificant exte
This follows from physical considerations. This conclusi
also follows from the flow equations that drive the ion de
sity to large values. Since the dipole density is insignifica
we may ignore the ion-dipole pairing reaction. By compari
Eq. ~13! with Eq. ~6!, we see that the appropriate action f
this reaction is Eq.~3! with the replacementl→k, t→0,
andnc→n0. The flow equations for this case are

d ln n0

dl
52,

d ln k

dl
52

k

4pD
1

bJ

2p
2

b2g

4p
,

d ln~bJ!

dl
50, ~14!

d ln~b2g!

dl
50.

In this case,bJ is a constant to all orders. As before@19,38#,
it seems likely thatb2g is a constant to all orders. The flow
equation fork is accurate to first order only inb2g. For our
purpose, we will assume that the fixed-point reaction ra
k* /D52bJ2b2g, is always positive. Note that irrelevan
details can renormalize~a finite amount! all of the param-
eters of the model. Dipole screening leading to a dielec
constant greater than unity is an example of this pheno
enon.

We can again perform the matching. Since at the fix
point the reaction step is still rate limiting@26#, we find the
same classical decay as for the ion-pairing reaction:

^cA~ t !&;
1

k* t
S t

t0
D d

. ~15!

.
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Since reactant segregation is suppressed, this result fo
high-temperature ionic reactionA11B2→B is identical to
that for the neutral reactionA1A→B except for a different
value ofk* @38#.

VII. CONCLUSIONS

There are many systems well modeled by the 2D C
lomb gas. A simple physical system might be, for examp
ions confined to a thin film between two insulators. Oth
examples include dislocations or disclinations in syste
such as charge-density waves, Abrikosov flux lattices,
Langmuir-Blodgett films. In all cases, the defects unbind
higher temperatures, in a form of Kosterlitz-Thoules
Berezinskii transition. In the case of disclinations, or sca
charges, this transition is exactly of the form that we co
sider, and the system is a perfect instance of the 2D Coulo
gas model. The type of disorder that we consider of
comes about in these systems via pinning of some of
defects. The density of impurities, which are disrupting
low-temperature phase, can be controlled via the numbe
surface defects and is given roughly byr5Ag/J.

For these systems we make the following experimen
predictions. There should be a continuously variable tra
tion temperature in the presence of long-ranged, logarithm
type disorder. This type of disorder is naturally induced
a

ev
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g-
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impurity phases in these systems. This equilibrium behav
has, in fact, been seen in the melting of hexatic monolay
@44# and hexatic charge-density waves@45,46#, where discli-
nations pinned by surface defects lead to a continuous l
ering of the hexatic-liquid transition temperature. In oth
words, these experiments have shown that the order-diso
transition can be driven either by increasing temperature
by increasing disorder. In terms of Fig. 3, these experime
crossed the transition line by increasing the disorder, i.e.
moving vertically upwards. Ionic reactions, such as tho
considered in @20–26#, should decay as ^cA(t)&
;1/(2bJDt) at long times in the absence of disorder. In t
presence of long-ranged, logarithmic-type disorder@11,27–
34#, ions at finite density should pair in the low-temperatu
phase according to Eq.~12!. Finally, the concentration o
ions undergoing a bimolecular chemical reaction at h
temperature in this same type of disorder should decay as
~15!.
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